Abstract
AbstractThe bacterial wilt is a global destructive plant disease that initiated by the phytopathogenic Ralstonia solanacearum. This study display a novel biofabrication of silica/silver nanocomposite using Fusarium oxysporum-fermented rice husk (RH) under solid state fermentation (SSF). The biofabricated nanocomposite was characterized by XRD, UV–Vis. spectroscopy, DLS, SEM, EDX elemental mapping, and TEM analyses as well as investigated for anti-R. solanacearum activity. Response surface methodology was also processed for optimizing the biofabrication process and improving the anti-bacterial activity of the fabricated nanocomposite. Maximum suppression zone of 29.5 mm against R. solanacearum was reached at optimum RH content of 6.0 g, AgNO3 concentration of 2.50 mM, reaction pH of 6.3, and reaction time of 2 days. The anti-R. solanacearum activity of the fabricated nanocomposite was further improved by exposing the F. oxysporum strain to a gamma irradiation dose of 200 Gy. In conclusion, RH recycling under SSF by F. oxysporum could provide an innovative, facile, non-expensive, and green approach for fabricating SiO2/Ag nanocomposite that could be applied efficiently as an eco-friendly antibacterial agent to combat R. solanacearum in agricultural applications. Moreover, the developed method could serve as a significant platform for the designing of new nanostructures for broad applications.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献