Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis

Author:

Wei ZhenORCID,Chen Jinling,Xu Linxiang,Liu Nannan,Yang Jie,Wang Shujun

Abstract

AbstractAs an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of dextranase AoDex in glycoside hydrolase (GH) family 49 that derived from Arthrobacter oxydans KQ11. Some mutants were predicted and constructed based on B-factor analysis, PoPMuSiC and HotMuSiC algorithms, and four mutants exhibited higher heat resistance. Compared with the wild-type, mutant S357P showed the best improved thermostability with a 5.4-fold increase of half-life at 60 °C, and a 2.1-fold increase of half-life at 65 °C. Furthermore, S357V displayed the most obvious increase in enzymatic activity and thermostability simultaneously. Structural modeling analysis indicated that the improved thermostability of mutants might be attributed to the introduction of proline and hydrophobic effects, which generated the rigid optimization of the structural conformation. These results illustrated that it was effective to improve the thermostability of dextranase AoDex by rational design and site-directed mutagenesis. The thermostable mutant of dextranase AoDex has potential application value, and it can also provide references for engineering other thermostable dextranases of the GH49 family.

Funder

Natural Science Foundation of Jiangsu Province

Open-end Funds of Jiangsu Institute of Marine Resources Development

Natural Science Foundation of Jiangsu Higher Education Institutions of China

Jiangsu Natural Resources Development Special Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3