Abstract
AbstractThe increasing global perception of the importance of microbial inoculants to promote productivity and sustainability in agriculture prompts the adoption of bio-inputs by the farmers. The utilization of selected elite strains of nitrogen-fixing and other plant-growth promoting microorganisms in single inoculants creates a promising market for composite inoculants. However, combining microorganisms with different physiological and nutritional needs requires biotechnological development. We report the development of a composite inoculant containing Bradyrhizobium diazoefficiens and Azospirillum brasilense for the soybean crop. Evaluation of use of carbon sources indicates differences between the microbial species, with Bradyrhizobium growing better with mannitol and glycerol, and Azospirillum with malic acid and maleic acid, allowing the design of a formulation for co-culture. Species also differ in their growth rates, and the best performance of both microorganisms occurred when Azospirillum was inoculated on the third day of growth of Bradyrhizobium. The composite inoculant developed was evaluated in five field trials performed in Brazil, including areas without and with naturalized populations of Bradyrhizobium. The composite inoculant resulted in symbiotic performance comparable to the application of the two microorganisms separately. In comparison to the single inoculation with Bradyrhizobium, co-inoculation resulted in average increases of 14.7% in grain yield and 16.4% in total N accumulated in the grains. The performance of the composite inoculant was similar or greater than that of the non-inoculated control receiving a high dose of N-fertilizer, indicating the importance of the development and validation of inoculants carrying multiple beneficial microorganisms.
Funder
INCT-Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility
Technical Collaboration of Embrapa Soja-Total Biotecnologia
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference56 articles.
1. Balatti, AP (1992) Producción de inoculantes para leguminosas: Tecnología de las fermentaciones aplicada a los géneros Rhizobium y Bradyrhizobium. La Plata, Argentina, Editora Trabuco, pp 63–91
2. Balatti, AP, Freire JRJ (1996). Legume inoculants: Selection and characterization of ctrains - Production, use and management. La Plata, Argentina, Editorial Kingraf, pp 148
3. Barbosa JZ, Hungria M, Sena JVS, Poggere G, Reis AR, Corrêa RS (2021) Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl Soil Ecol 163:103913. https://doi.org/10.1016/j.apsoil.2021.103913
4. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770. https://doi.org/10.1016/S0734-9750(98)00003-2
5. Bellabarba A, Fagorzi C, di Cenzo GC, Pini F, Viti C, Checcucci A (2019) Deciphering the symbiotic plant microbiome: translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agron J 9(9):529. https://doi.org/10.3390/agronomy9090529
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献