Polyvinyl alcohol coating releasing fungal blastospores improves kill effect of attract-and-kill beads

Author:

Hermann Katharina M.ORCID,Grünberger AlexanderORCID,Patel Anant V.ORCID

Abstract

AbstractPolyvinyl alcohol (PVA) is a biodegradable, water-soluble polymer with excellent film forming properties, commonly studied or used as tablet coating, food packaging or controlled release fertilizers. Attract-and-kill (AK) beads are sustainable, microbial alternatives to synthetic soil insecticides, whose onset of lethal effect largely depend on how fast the encapsulated entomopathogenic fungus forms virulent conidia. Therefore, the objective of this study was to develop a water-soluble coating accelerating the kill effect of AK beads by immediately releasing virulent Metarhizium brunneum CB15-III blastospores. We assessed three PVA types (PVA 4-88, 8-88, 10-98) which differed in their degree of hydrolysis or molecular weight for their ability to release viable blastospores from thin films after drying at 60–40 °C, and examined how polyethylene glycol and soy-lecithin impact the blastospore survival. Finally, we evaluated the effectiveness of coated AK beads in a bioassay against Tenebrio molitor larvae. The blastospore release rate quadrupled within the first 5 min with decreasing molecular weight and degree of hydrolysis, with PVA 4-88 releasing 79 ± 19% blastospores. Polyethylene glycol and soy-lecithin significantly increased the blastospore survival to 18–28% for all three PVA types. Coated beads exhibited a uniform, 22.4 ± 7.3 µm thin coating layer, with embedded blastospores, as confirmed by scanning electron microscopy. The blastospore coating increased the mortality rate of T. molitor larvae over uncoated AK beads, decreasing the median lethal time from 10 to 6 days. Consequently, the blastospore coating accelerated the kill effect of regular AK beads. These findings pave the way to enhanced pest control efficacy from coated systems such as beads or seeds. Graphical Abstract

Funder

Bundesministerium für Ernährung und Landwirtschaft

Fachhochschule Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3