Development of a perfusion process for serum-free adenovirus vector herpes zoster vaccine production

Author:

Sun Yang,Huang Lingling,Nie Jianqi,Feng Kai,Liu Yupeng,Bai Zhonghu

Abstract

AbstractHerpes zoster is caused by reactivation of the varicella zoster virus (VZV). Researching and developing a herpes zoster vaccine will help to decrease the incidence of herpes zoster. To increase the bioreactor productivity, a serum-free HEK293 cell perfusion process with adenovirus vector herpes zoster (rAd-HZ) vaccine production was developed efficiently using the design of experiment (DoE) method. First, serum-free media for HEK293 cells were screened in both batch and semi-perfusion culture modes. Then, three optimal media were employed in a medium mixture design to improve cell culture performance, and the 1:1 mixture of HEK293 medium and MCD293 medium (named HM293 medium) was identified as the optimal formulation. On the basis of the HM293 medium, the relationship of critical process parameters (CPPs), including the time of infection (TOI), multiplicity of infection (MOI), pH, and critical quality attributes (CQAs) (adenovirus titer (Titer), cell-specific virus yield (CSVY), adenovirus fold expansion (Fold)) of rAd-HZ production was investigated using the DoE approach. Furthermore, the robust setpoint and design space of these CPPs were explored. Finally, the rAd-HZ production process with parameters at a robust setpoint (TOI = 7.2 × 106 cells/mL, MOI = 3.7, and pH = 7.17) was successfully scaled-up to a 3-L bioreactor with an alternating tangential flow system, yielding an adenovirus titer of 3.0 × 1010 IFU/mL, a CSVY of 4167 IFU/cells, a Fold of 1117 at 2 days post infection (dpi). The DoE approach accelerated the development of a HEK293 serum-free medium and of a robust adenovirus production process.

Funder

This study was funded by the National Key R&D Program of China

the Key scientific research projects of colleges and universities in Henan Province

the National Natural Science Foundation of China

the Natural Science Foundation of Jiangsu Province

the national first-class discipline program of Light Industry Technology and Engineering

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3