Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream

Author:

Tan Yun Nian,Lee Pei Pei,Chen Wei NingORCID

Abstract

AbstractChitin and chitosan are natural amino polysaccharides that have exceptional biocompatibility in a wide range of applications such as drug delivery carriers, antibacterial agents and food stabilizers. However, conventional chemical extraction methods of chitin from marine waste are costly and hazardous to the environment. Here we report a study where shrimp waste was co-fermented with Lactobacillus plantarum subsp. plantarum ATCC 14917 and Bacillus subtilis subsp. subtilis ATCC 6051 and chitin was successfully extracted after deproteinization and demineralization of the prawn shells. The glucose supplementation for fermentation was replaced by waste substrates to reduce cost and maximize waste utilization. A total of 10 carbon sources were explored, namely sugarcane molasses, light corn syrup, red grape pomace, white grape pomace, apple peel, pineapple peel and core, potato peel, mango peel, banana peel and sweet potato peel. The extracted chitin was chemically characterized by Fourier Transform Infrared Spectroscopy (FTIR) to measure the degree of acetylation, elemental analysis (EA) to measure the carbon/nitrogen ratio and X-ray diffraction (XRD) to measure the degree of crystallinity. A comparison of the quality of the crude extracted chitin was made between the different waste substrates used for fermentation and the experimental results showed that the waste substrates generally make a suitable replacement for glucose in the fermentation process. Red grape pomace resulted in recovery of chitin with a degree of deacetylation of 72.90%, a carbon/nitrogen ratio of 6.85 and a degree of crystallinity of 95.54%. These achieved values were found to be comparable with and even surpassed commercial chitin.

Funder

Nanyang Technological University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference70 articles.

1. Adour L, Arbia W, Amrane A, Mameri N (2008) Combined use of waste materials—recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J Chem Technol Biotechnol 83:1664–1669

2. Al Sagheer F, Al-Sughayer M, Elsabee M (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohyd Polym 77(2):410–419

3. Alabaraoye E, Achilonu M, Hester R (2018) Biopolymer (Chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ 26(6):2207–2218

4. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods—a review. Food Technol Biotechnol 51(1):12–25

5. Arbia W, Arbia L, Adour L, Amrane A, Lounici H, Mameri N (2017) Kinetic study of bio-demineralization and biodeproteinization of shrimp biowaste for chitin recovery. Algerian J Environ Sci Technol 3(1):8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3