Abstract
Abstract(R)-1-[3-(Trifluoromethyl)phenyl]ethanol ((R)-MTF-PEL) is an important chiral building block for the synthesis of a neuroprotective compound, (R)-3-(1-(3-(trifluoromethyl)phenyl)ethoxy)azetidine-1-carboxamide. In this work, an effective whole-cell-catalyzed biotransformation was developed to produce (R)-MTF-PEL, and its productivity was increased by medium engineering strategy. The recombinant E. coli BL21(DE3)-pET28a(+)-LXCAR-S154Y variant affording carbonyl reductase was adopted for the reduction of 3'-(trifluoromethyl)acetophenone to (R)-MTF-PEL with enantiomeric excess (ee) > 99.9%. The addition of 0.6% Tween-20 (w/v) boosted the bioreduction, because the substrate concentration was increased by 4.0-fold than that in the neat buffer solution. The biocatalytic efficiency was further enhanced by introducing choline chloride: lysine (ChCl:Lys, molar ratio of 1:1) in the reaction medium, because the product yield reached 91.5% under 200 mM substrate concentration in the established Tween-20/ChCl:Lys-containing system, which is the highest ever reported for (R)-MTF-PEL production. The optimal reduction conditions were as follows: 4% (w/v) ChCl:Lys, 12.6 g (DCW)/L recombinant E. coli cells, pH 7.0, 30 ℃ and 200 rpm, reaction for 18 h. The combined strategy of surfactant and NADES has great potential in the biocatalytic process and the synthesis of chiral alcohols.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献