Micafungin effect on Pseudomonas aeruginosa metabolome, virulence and biofilm: potential quorum sensing inhibitor

Author:

Hijazi Duaa M.,Dahabiyeh Lina A.ORCID,Abdelrazig SalahORCID,Alqudah Dana A.,Al-Bakri Amal G.ORCID

Abstract

AbstractThe prevalence of antibiotic resistance in Pseudomonas aeruginosa places a heavy burden on the health care sectors urging the need to find alternative, non-antibiotic strategies. The interference with the P. aeruginosa quorum sensing (QS) system represents a promising alternative strategy to attenuate the bacterial virulency and its ability to form biofilms. Micafungin has been reported to impede the pseudomonal biofilm formation. However, the influences of micafungin on the biochemical composition and metabolites levels of P. aeruginosa have not been explored. In this study, the effect of micafungin (100 µg/mL) on the virulence factors, QS signal molecules and the metabolome of P. aeruginosa was studied using exofactor assay and mass spectrometry-based metabolomics approaches. Furthermore, confocal laser scanning microscopy (CLSM) using the fluorescent dyes ConA-FITC and SYPRO® Ruby was used to visualize micafungin disturbing effects on the pseudomonal glycocalyx and protein biofilm-constituents, respectively. Our findings showed that micafungin significantly decreased the production of various QS-controlled virulence factors (pyocyanin, pyoverdine, pyochelin and rhamnolipid), along with a dysregulation in the level of various metabolites involved in QS system, lysine degradation, tryptophan biosynthesis, TCA cycle, and biotin metabolism. In addition, the CLSM examination showed an altered matrix distribution. The presented findings highlight the promising role of micafungin as a potential quorum sensing inhibitor (QSI) and anti-biofilm agent to attenuate P. aeruginosa pathogenicity. In addition, they point to the promising role of metabolomics study in investigating the altered biochemical pathways in P. aeruginosa.

Funder

Deanship of Scientific Research, University of Jordan

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3