Genome-wide analysis of the Pleurotus eryngii laccase gene (PeLac) family and functional identification of PeLac5

Author:

Li Zihao,Zhou Yuanyuan,Xu Congtao,Pan Jinlong,Li Haikang,Zhou Yi,Zou YajieORCID

Abstract

AbstractThe laccase gene family encodes multiple isozymes that are crucial for the degradation of substrates and the regulation of developmental processes in fungi. Pleurotus eryngii is an important edible and medicinal fungus belonging to the Basidiomycota phylum and can grow on a variety of natural substrates. In the present study, genome-wide profiling of P. eryngii identified 10 genes encoding its laccase isoenzymes. Conservative sequence analysis demonstrated that all PeLacs possess classical laccase structural domains. Phylogenetic analysis yielded four major subgroups, the members of which are similar with respect to conserved gene organization, protein domain architecture, and consensus motifs. The 10 PeLacs formed three groups together with 12 PoLacs in Pleurotus ostreatus, indicating that they share a high level of evolutionary homology. Cis-responsive element analysis implied that PeLacs genes play a role in growth and development and lignocellulose degradation. Targeted overexpression of PeLac5 reduced the time to primordia formation and their development to fruiting bodies. Gene expression patterns in the presence of different lignocellulosic substrates indicate that three PeLacs genes (2, 4, and 9) are key to lignocellulose degradation. This work presents the first inventory of laccase genes in P. eryngii and preliminarily explores their functions, which may help to uncover the manner by which these proteins utilize substrates.

Funder

Agriculture Research System of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3