Biodegradation of isoproturon by Escherichia coli expressing a Pseudomonas putida catechol 1,2-dioxygenase gene

Author:

Elarabi Nagwa I.,Abdelhadi Abdelhadi A.,Nassrallah Amr A.,Mohamed Mahmoud S. M.,Abdelhaleem Heba A. R.

Abstract

AbstractThe phenylurea herbicides are persistent in soil and water, necessitating the creation of methods for removing them from the environment. This study aimed to examine the soil microbial diversity, searching for local bacterial isolates able to efficiently degrade the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1, 1-dimethylurea (IPU). The best isolates able to effectively degrade IPU were selected, characterized, and identified as Pseudomonas putida and Acinetobacter johnsonii. The catechol 1, 2-dioxygenase enzyme's catA gene was amplified, cloned, and expressed in E. coli M15. The Expressed E. coli showed high degradation efficiency (44.80%) as analyzed by HPLC after 15 days of inoculation in comparison to P. putida (21.60%). The expression of the catA gene in P. putida and expressed E. coli was measured using quantitative polymerase chain reaction (qPCR). The results displayed a significant increase in the mRNA levels of the catA gene by increasing the incubation time with IPU. Hydrophilic interaction chromatography (HILIC) mass spectrometry analysis revealed that three intermediate metabolites, 1-(4-isopropylphenyl)-3-methylurea (MDIPU), 4-Isopropylaniline (4-IA) and 1-(4-isopropylphenyl) urea (DDIPU) were generated by both P. putida and expressed E. coli. In addition, IPU-induced catA activity was detected in both P. putida and expressed E. coli. The supernatant of both P. putida and expressed E. coli had a significant influence on weed growth. The study clearly exhibited that P. putida and expressed E. coli were capable of metabolizing IPU influentially and thus could be utilized for bioremediation and biodegradation technology development.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3