Transcriptional differentiation driving Cucumis sativus–Botrytis cinerea interactions based on the Skellam model and Bayesian networks

Author:

Zhang Qi,Li Kaihang,Yang Yan,Li Beibei,Jiang Libo,He XiaoqingORCID,Jin Yi,Zhao Guozhu

Abstract

AbstractRobust statistical tools such as the Skellam model and Bayesian networks can capture the count properties of transcriptome sequencing data and clusters of genes among treatments, thereby improving our knowledge of gene functions and networks. In this study, we successfully implemented a model to analyze a transcriptome dataset of Cucumis sativus and Botrytis cinerea before and after their interaction. First, 4200 differentially expressed genes (DEGs) from C. sativus were clustered into 17 distinct groups, and 670 DEGs from B. cinerea were clustered into 12 groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied on these DEGs to assess the interactions between C. sativus and B. cinerea. In C. sativus, more DEGs were divided into terms in the molecular function and biological process domains than into cellular components, and 277 DEGs were allocated to 19 KEGG pathways. In B. cinerea, more DEGs were divided into terms in the biological process and cellular component domains than into molecular functions, and 150 DEGs were allocated to 26 KEGG pathways. In this study, we constructed networks of genes that interact with each other to screen hub genes based on a directed graphical model known as Bayesian networks. Through a detailed GO analysis, we excavated hub genes which were biologically meaningful. These results verify that availability of Skellam model and Bayesian networks in clustering gene expression data and sorting out hub genes. These models are instrumental in increasing our knowledge of gene functions and networks in plant–pathogen interaction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3