Molecular dynamics simulation and experimental study of the surface-display of SPA protein via Lpp-OmpA system for screening of IgG

Author:

Vahed M.,Ramezani F.,Tafakori V.,Mirbagheri V. S.,Najafi A.,Ahmadian G.

Abstract

AbstractStaphylococcal protein A (SpA) is a major virulence factor of Staphylococcus aureus. S. aureus is able to escape detection by the immune system by the surface display of protein A. The SpA protein is broadly used to purify immunoglobulin G (IgG) antibodies. This study investigates the fusion ability of Lpp′-OmpA (46–159) to anchor and display five replicate domains of protein A with 295 residues length (SpA295) of S. aureus on the surface of Escherichia coli to develop a novel bioadsorbent. First, the binding between Lpp’-OmpA-SPA295 and IgGFc and the three-dimensional structure was investigated using molecular dynamics simulation. Then high IgG recovery from human serum by the surface-displayed system of Lpp′-OmpA-SPA295 performed experimentally. In silico analysis was demonstrated the binding potential of SPA295 to IgG after expression on LPP-OmpA surface. Surface-engineered E. coli displaying SpA protein and IgG-binding assay with SDS-PAGE analysis exhibited high potential of the expressed complex on the E. coli surface for IgG capture from human serum which is applicable to conventional immune precipitation.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference31 articles.

1. Barrett CT, Webb SR, Dutch RE (2019) A hydrophobic target: using the paramyxovirus fusion protein transmembrane domain to modulate fusion protein stability. J Virol 93(17):e00863-19

2. Boyle MDP (1990) In bacterial immunoglobulin-binding proteins. In: Boyle M (ed) Applications in immunotechnology, vol 2. Academic Press Inc, San Diego, pp 3–13

3. Cary S, Krishnan M, Marion TN, Silverman GJ (1999) The murine clan V(H) III related 7183, J606 and S107 and DNA4 families commonly encode for binding to a bacterial B cell superantigen. Mol Immunol 36:769–776

4. Cavallari M (2017) Rapid and direct VHH and target identification by staphylococcal surface display libraries. Int J Mol Sci 18:1507–1524

5. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. In: Liu B (ed) Yeast surface display. Methods in molecular biology, vol 1319. Humana Press, New York

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3