Post-harvest biocontrol of Fusarium infection in tomato fruits using bio-mediated selenium nanoparticles

Author:

Manaa Howaida M.,Hamza Ebtsam M.,Sorour Noha M.ORCID

Abstract

AbstractThe protection of post-harvest infection by Fusarium spp. is a major worldwide demand, especially using effective natural alternatives to chemical fungicides. In this respect, selenium nanoparticles (SeNPs) were biosynthesized using Fenugreek seeds aqueous extract. Bio-mediated SeNPs were characterized using XRD, FTIR, UV–Vis, TEM, and EDX. XRD confirmed the crystalline nature with six characteristic peaks corresponding to Se-nanocrystals. TEM showed spherical-shaped SeNPs with 34.02–63.61 nm diameter. FTIR verified the presence of different bio-functional groups, such as, N–H, O–H, C–N, and C–NH2 acting as stabilizing/reducing agents during the biosynthesis. Bio-mediated SeNPs exhibited excellent biocidal activity against F. oxysporum and F. moniliforme, with MIC of 0.25 and 1.7 mg/mL, respectively. Direct treatment of F. oxysporum with SeNPs led to significant deformation and lysis of the fungal hyphae within 18 h. The treatment of infected fruits with MIC of SeNPs reduced the infection signs by 100% and preserved the fresh-like appearance of treated fruits for 25 and 35 days when stored at 25 °C and 5 °C, respectively. Therefore, SeNPs is considered efficacious fungicidal against Fusarium spp. in-vitro and in-vivo. The treatment of tomato fruits with MIC of SeNPs positively affected its chemical properties, as well as decreased weight loss %, confirming the barrier effect of SeNPs, thus increasing fruits’ shelf-life. Bio-mediated SeNPs appeared safe towards normal HSF and OEC cell lines with IC50> 300 μg/mL. Overall results recommend the usage of bio-mediated SeNPs as safe powerful bioagent against Fusarium infection, maintaining tomato quality, and providing protection from post-harvest invasion and/or destroying existing infections. Graphical Abstract

Funder

Ministry of Scientific Research, Egypt

University of Sadat City

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference62 articles.

1. Abiso E, Satheesh N, Hailu A (2015) Effect of storage methods and ripening stages on postharvest quality of tomato (Lycopersicom esculentum mill) cv. Chali. Ann Food Sci Technol 6:127–137

2. Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic Press, Cambridge, pp 4–5

3. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9(1):105–116

4. Al-Dairi M, Pathare PB, Al-Yahyai R (2021a) Chemical and nutritional quality changes of tomato during postharvest transportation and storage. J Saudi Soc of Agric Sci 20(6):401–408

5. Al-Dairi M, Pathare PB, Al-Yahyai R (2021b) Effect of postharvest transport and storage on color and firmness quality of tomato. Horticulturae 7(7):163

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3