Author:
Zhang Yi,Tian Cheng,Xiao Jiling,Wei Lin,Tian Yun,Liang Zhihuai
Abstract
Abstract
Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. niveum (FON) is a soil-borne disease that seriously limits watermelon production. In the present study, Trichoderma asperellum (T. asperellum) M45a was shown to be an effective biocontrol agent against FW. In a pot experiment, the application of 105 cfu/g of T. asperellum M45a granules had an improved control effect on FW during the blooming period (up to 67.44%) in soils subjected to five years of continuous cropping with watermelon, while the average length of watermelon vines was also significantly improved (P < 0.05). Additionally, the acid phosphatase (ACP), cellulase (CL), catalase (CAT), and sucrase (SC) activities in the M45a-inoculation group were significantly higher than those in the control (CK) group, and transformation of the soil nutrients (total N, NO3-N, and available P) was significantly increased. Moreover, T. asperellum M45a inoculation reduced fungal diversity, increased bacterial diversity and especially enhanced the relative abundance of plant growth-promoting rhizobacteria (PGPR), such as Trichoderma, Sphingomonas, Pseudomonas, Actinomadura, and Rhodanobacter. Through functional prediction, the relative abundance of ectomycorrhiza, endophytes, animal pathotrophs, and saprotrophs in the fungal community was determined to be significantly lower than that observed in the M45a-treated soil. Correlation analysis revealed that Sphingomonas, Pseudomonas, and Trichoderma had the most differences in terms of microorganism abundance, and these differences were positively correlated with ACP, CL, CAT, and SC. These findings provide guidance for the use of fungicides to achieve microecological control of FW in continuously cropped watermelon plots.
Funder
National Key Research and Development Program of China
The Hunan Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics