Abstract
AbstractLaccase is a versatile multicopper oxidase that holds great promise for many biotechnological applications. For such applications, it is essential to explore good biocatalytic systems for high activity and recyclability. The feasibility of membrane enclosed enzymatic catalysis (MEEC) for enzyme recycling with laccase was evaluated. The dialysis membrane enclosed laccase catalysis (DMELC) was tested for the conversion of the non-phenolic model substrate 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS). Trametes versicolor laccase was found to be completely retained by the dialysis membrane during the process. The ABTS total conversion after DMELC reached the same values as the batch reaction of the enzyme in solution. The efficiency of DMELC conversion of ABTS under different process conditions including shaking speed, temperature, ABTS concentration and pH was investigated. The repetitive dialysis minimally affected the activity and the protein content of the enclosed laccase. DMELC retained 70.3 ± 0.8% of its initial conversion after 5 cycles. The usefulness of MEEC extends to other enzymes with the benefit of superior activity of an enzyme in solution and the recyclability which is normally only obtained with immobilized enzymes.
Funder
Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission
China Scholarship Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献