New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs

Author:

Shou Li-Bin,Liu Yi-Fan,Zhou Jing,Liu Zhong-Lin,Zhou Lei,Liu Jin-Feng,Yang Shi-Zhong,Gu Ji-Dong,Mu Bo-ZhongORCID

Abstract

AbstractMicrobial degradation of recalcitrant alkanes under anaerobic conditions results in the accumulation of heavy oil fraction in oil reservoirs. Hydroxylation of alkanes is an important activation mechanism under anaerobic conditions, but the diversity and distribution of the responsible microorganisms in the subsurface environment are still unclear. The lack of functional gene polymerase chain reaction (PCR) primers and commercially available intermediate degradation chemical compounds are the major obstacles for this research. In this investigation, PCR primers for the ahyA gene (encoding alkane hydroxylase) were designed, evaluated, and improved based on the nucleotide sequences available. Using microbial genomic DNA extracted from oil-contaminated soil and production water samples of oil reservoirs, ahyA gene nucleotide sequences were amplified and retrieved successfully from production water sample Z3-25 of Shengli oilfield. Additionally, the signature biomarker of 2-acetylalkanoic acid was detected in both Shengli and Jiangsu oilfields. These results demonstrate that anaerobic hydroxylation is an active mechanism used by microorganisms to degrade alkanes in oxygen-depleted oil reservoirs. This finding expands the current knowledge of biochemical reactions about alkane degradation in subsurface ecosystems. In addition, the PCR primers designed and tested in this study serve as an effective molecular tool for detecting the microorganisms responsible for anaerobic hydroxylation of alkanes in this and other ecosystems.

Funder

National Natural Science Foundation of China

NSFC/RGC Joint Research Fund

Shanghai International Collaboration Program

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3