Discriminating two bacteria via laser-induced breakdown spectroscopy and artificial neural network

Author:

Arabi Dina,Hamdy Omnia,Mohamed Mahmoud S. M.,Abdel-Salam Zienab,Abdel-Harith MohamedORCID

Abstract

AbstractRapid and successful clinical diagnosis and bacterial infection treatment depend on accurate identification and differentiation between different pathogenic bacterial species. A lot of efforts have been made to utilize modern techniques which avoid the laborious work and time-consuming of conventional methods to fulfill this task. Among such techniques, laser-induced breakdown spectroscopy (LIBS) can tell much about bacterial identity and functionality. In the present study, a sensitivity-improved version of LIBS, i.e. nano-enhanced LIBS (NELIBS), has been used to discriminate between two different bacteria (Pseudomonas aeruginosa and Proteus mirabilis) belonging to different taxonomic orders. Biogenic silver nanoparticles (AgNPs) are sprinkled onto the samples’ surface to have better discrimination capability of the technique. The obtained spectroscopic results of the NELIBS approach revealed superior differentiation between the two bacterial species compared to the results of the conventional LIBS. Identification of each bacterial species has been achieved in light of the presence of spectral lines of certain elements. On the other hand, the discrimination was successful by comparing the intensity of the spectral lines in the spectra of the two bacteria. In addition, an artificial neural network (ANN) model has been created to assess the variation between the two data sets, affecting the differentiation process. The results revealed that NELIBS provides higher sensitivity and more intense spectral lines with increased detectable elements. The ANN results showed that the accuracy rates are 88% and 92% for LIBS and NELIBS, respectively. In the present work, it has been demonstrated that NELIBS combined with ANN successfully differentiated between both bacteria rapidly with high precision compared to conventional microbiological discrimination techniques and with minimum sample preparation.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3