Abstract
AbstractCandida albicans is a highly drug-resistant fungus for which new treatments are urgently needed due to the lack of clinically effective options. In this study, we evaluated the antifungal activity and mechanism of plasma-activated Ezhangfeng Cuji (PAEC) against Candida albicans and compared it with physiological saline (PS), plasma-activated physiological saline (PAPS) and Ezhangfeng Cuji (EC). After dielectric barrier discharge (DBD) plasma treatment with EC for 20 min followed by a 10 min immersion of Candida albicans, the fungus was reduced by approximately 3 orders of magnitude. High performance liquid chromatography (HPLC) results showed an increase of 41.18% and 129.88% in the concentration of oxymatrine and rhein, respectively, after plasma-treated EC. The concentrations of reactive species (RS), such as H2O2, $${\text{NO}}_{3}^{ - }$$
NO
3
-
, and O3, were found to be higher and the pH value was getting lower in PS after plasma treatment. Detailed analysis of intracellular material leakage, reactive oxygen species (ROS), apoptosis for Candida albicans and observation by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) demonstrated that PAPS, EC and PAEC disrupt the morphological structure of Candida albicans to varying degrees.Additionally, specific analyses on Candida albicans virulence factors, such as adhesion to tissue surfaces, cell surface hydrophobicity (CSH), the transition of yeast-phase cells to mycelium-phase cells, and the secretion of hydrolytic enzymes for Candida albicans were conducted and found to be inhibited after PAPS/EC/PAEC treatment. In our investigation, the inhibitory effects on Candida albicans were ranked from strong to weak as follows: PAEC, EC, PAPS, and PS.
Funder
the University Synergy Innovation Program of Anhui Province
the National Natural Science Foundation of China
the Clinical Medicine Discipline Construction Project of Anhui Medical University in 2021
Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献