Abstract
Abstract
Development of a genetic tool for visualization of photosynthetic bacteria (PSB) is essential for understanding microbial function during their interaction with plant and microflora. In this study, Rhodopseudomonas palustris GJ-22-gfp harboring the vector pBBR1-pckAPT-gfp was constructed using an electroporation transformation method and was used for dynamic tracing of bacteria in plants. The results showed that strain GJ-22-gfp was stable and did not affect the biocontrol function, and the Confocal Laser Scanning Microscopy (CLSM) results indicated it could successfully colonised on the surface of leaf and root of tobacco and rice. In tobacco leaves, cells formed aggregates on the mesophyll epidermal cells. While in rice, no aggregate was found. Instead, the fluorescent cells colonise the longitudinal intercellular spaces between epidermal cells. In addition, the results of strain GJ-22 on the growth promotion and disease resistance of tobacco and rice indicated that the different colonization patterns might be related to the bacteria could induce systemic resistance in tobacco.
Funder
Key Technology Research and Development Program of Shandong
the National Science Foundation of China
Jiangsu Agricultural Science and Technology Independent Innovation Fund
Natural Science Foundation of Hunan Province
the Hunan Provincial key research and Development Plan
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献