A joint PCR-based gene-targeting method using electroporation in the pathogenic fungus Trichosporon asahii

Author:

Matsumoto YasuhikoORCID,Nagamachi Tae,Yoshikawa Asami,Yamada Tsuyoshi,Sugita Takashi

Abstract

AbstractTrichosporon asahii is a pathogenic fungus that causes deep-seated fungal infections in immunocompromised patients. Established methods for generating gene-deficient T. asahii mutants exist, but the frequency of obtaining transformants by electroporation remains low. In the present study, we optimized the conditions for gene transfer by electroporation using a ku70 gene-deficient mutant with high recombination efficiency. Introducing a DNA fragment by electroporation into T. asahii cells on Sabouraud dextrose agar to generate a cnb1 gene-deficient mutant and incubating for 1 day led to the growth of approximately 100 transformants. When the incubation period was extended to 2 days or 5 days, however, only 2 or no transformants, respectively, were grown. The highest number of transformants was grown by electroporation when a square wave at 1.8 kV (9 kV/cm) was applied for 5 ms. In addition, the number of transformants increased with an increase in the length of the homologous region, and transformants did not grow when the homologous region was less than 500 base pairs. A DNA fragment was produced for deletion of the cnb1 gene by joint PCR, and the cnb1 gene-deficient mutant was obtained by introducing the DNA fragment by electroporation. These results indicate that DNA fragments produced by joint PCR can be used to generate gene-deficient mutants of T. asahii through gene transfer by electroporation. Graphical Abstract

Funder

Japan Society for the Promotion of Science London

Emerging and Re-emerging Infectious Diseases of the Japan Agency for Medical Research and Development, AMED

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3