An indoor augmented-reality evacuation system for the Smartphone using personalized Pedometry

Author:

Ahn Junho,Han Richard

Abstract

AbstractThere currently exist widely used mobile phone emergency applications for the smartphone and limited mobile emergency applications for indoor environments. However, the outdoor applications only focus primarily on providing accident information to users, and the indoor applications are limited by the unavailability of GPS user-positioning and by WiFi-based access problems. To compensate for these limitations, we propose the RescueMe system, which uses an indoor mobile Augmented Reality application, personalized pedometry, and an optimal exit path algorithm. Together these components comprise a system that can quickly and easily recommend an efficient exit path to mobile phone users in emergency situations. We have developed the mobile-based RescueMe system for use in large-scale buildings that contain complex paths. We show how RescueMe leverages the sensors on a smartphone and utilizes Augmented Reality, cloud information, daily-based user walking patterns, and an adaptive GPS connection method, to deliver critical evacuation information to mobile phone users in indoor emergency situations.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference20 articles.

1. Federal Emergency Management Agency (FEMA) [http://www.fema.gov/] []

2. Ahn J, Han R: RescueMe: An Indoor Mobile Augmented-Reality Evacuation System by Personalized Pedometry. In Proceedings of IEEE APSCC 2011, 70–77. 10.1109/APSCC.2011.26

3. Iq engines: Image recognition and visual search [http://www.iqengines.com] []

4. Miller LE, Wilson PF, Bryner NP, Francis MH, Guerrieri JR, Stroup DW, Klein-berndt L: Rfid-assisted indoor localization and communication for first responders. 2006, 1–6. 10.1109/EUCAP.2006.4584714

5. Miluzzo E, Lane ND, Fodor K, Peterson R, Lu H, Musolesi M, Eisenman SB, Zheng X, Campbell AT: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM conference on Embedded network sensor systems, SenSys ’08. ACM, New York; 2008. pp 337–350 pp 337–350

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical see-through augmented reality fire safety training for building occupants;Automation in Construction;2024-06

2. Digital Technologies for Fire Evacuations;Digital Innovations in Architecture, Engineering and Construction;2024

3. Situational Awareness and Feature Extraction for Indoor Building Navigation using Mixed Reality;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

4. Spatial Analysis and Visual Communication of Emergency Information through Augmented Reality;Journal of Imaging Science and Technology;2023-11-01

5. A Message Reduction Method Based on Geographical Information in Initiative-Evacuation Induction Using Social Graphs;2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3