An adapted protocol to derive microglia from stem cells and its application in the study of CSF1R-related disorders
-
Published:2024-04-05
Issue:1
Volume:19
Page:
-
ISSN:1750-1326
-
Container-title:Molecular Neurodegeneration
-
language:en
-
Short-container-title:Mol Neurodegeneration
Author:
Dorion Marie-France, Casas Diana, Shlaifer Irina, Yaqubi Moein, Fleming Peter, Karpilovsky Nathan, Chen Carol X.-Q., Nicouleau Michael, Piscopo Valerio E. C., MacDougall Emma J., Alluli Aeshah, Goldsmith Taylor M., Schneider Alexandria, Dorion Samuel, Aprahamian Nathalia, MacDonald Adam, Thomas Rhalena A., Dudley Roy W. R., Hall Jeffrey A., Fon Edward A., Antel Jack P., Stratton Jo Anne, Durcan Thomas M., La Piana Roberta, Healy Luke M.ORCID
Abstract
Abstract
Background
Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R.
Methods
Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL.
Results
The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls.
Conclusions
We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.
Graphical Abstract
Funder
Canadian Institutes of Health Research Fonds de Recherche du Québec - Santé Healthy Brains Healthy Lives Québec Consortium for Drug Discovery Sebastian and Ghislaine van Berkom Foundation Alain and Sandra Bouchard Foundation Michael J. Fox Foundation for Parkinson's Research
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and Central Nervous System-Associated Macrophages—From Origin to Disease Modulation. Annu Rev Immunol. 2021;39(1):251–77. 2. Speicher AM, Wiendl H, Meuth SG, Pawlowski M. Generating microglia from human pluripotent stem cells: novel in vitro models for the study of neurodegeneration. Mol Neurodegener. 2019;14(1):46. 3. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron. 2017;94(2):278–93.e9. 4. McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener. 2018;13(1):67. 5. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43.
|
|