Abstract
Abstract
Background
Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer’s disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known.
Methods
Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress.
Results
Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of persons with AD dementia carrying APOE3/4 compared to APOE3/3. Higher phosphorylated p38 MAPK but not ERK1/2 was found in ApoE4 primary astrocytes and mouse brains than that in ApoE3. Greater cPLA2 translocation to cytosol was observed in human postmortem frontal cortical synaptosomes with recombinant ApoE4 than ApoE3 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition.
Conclusions
Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.
Funder
National Institute on Aging
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology
Reference61 articles.
1. Six DA, Dennis EA. The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta. 2000;1488:1–19.
2. Strokin M, Sergeeva M, Reiser G. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol. 2003;139:1014–22.
3. Cheon Y, Kim H-W, Igarashi M, Modi HR, Chang L, Ma K, et al. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A2-VIA (iPLA2β)-knockout mice. Biochim Biophys Acta. 1821;2012:1278–86.
4. Gijón MA, Leslie CC. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol. 1999;65:330–6.
5. Berk P, Stump D. Mechanisms of cellular uptake of long chain free fatty acids. In: Lipid binding proteins within molecular and cellular biochemistry: Springer; 1999. p. 17–31.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献