Author:
Levites Yona,Funk Cory,Wang Xue,Chakrabarty Paramita,McFarland Karen N.,Bramblett Baxter,O’Neal Veronica,Liu Xufei,Ladd Thomas,Robinson Max,Allen Mariet,Carrasquillo Minerva M.,Dickson Dennis,Cruz Pedro,Ryu Danny,Li Hong-Dong,Price Nathan D.,Ertekin-Taner NIlüfer,Golde Todd E.
Abstract
Abstract
Introduction
Passive immunotherapies targeting Aβ continue to be evaluated as Alzheimer’s disease (AD) therapeutics, but there remains debate over the mechanisms by which these immunotherapies work. Besides the amount of preexisting Aβ deposition and the type of deposit (compact or diffuse), there is little data concerning what factors, independent of those intrinsic to the antibody, might influence efficacy. Here we (i) explored how constitutive priming of the underlying innate activation states by Il10 and Il6 might influence passive Aβ immunotherapy and (ii) evaluated transcriptomic data generated in the AMP-AD initiative to inform how these two cytokines and their receptors’ mRNA levels are altered in human AD and an APP mouse model.
Methods
rAAV2/1 encoding EGFP, Il6 or Il10 were delivered by somatic brain transgenesis to neonatal (P0) TgCRND8 APP mice. Then, at 2 months of age, the mice were treated bi-weekly with a high-affinity anti-Aβ1–16 mAb5 monoclonal antibody or control mouse IgG until 6 months of age. rAAV mediated transgene expression, amyloid accumulation, Aβ levels and gliosis were assessed. Extensive transcriptomic data was used to evaluate the mRNA expression levels of IL10 and IL6 and their receptors in the postmortem human AD temporal cortex and in the brains of TgCRND8 mice, the later at multiple ages.
Results
Priming TgCRND8 mice with Il10 increases Aβ loads and blocks efficacy of subsequent mAb5 passive immunotherapy, whereas priming with Il6 priming reduces Aβ loads by itself and subsequent Aβ immunotherapy shows only a slightly additive effect. Transcriptomic data shows that (i) there are significant increases in the mRNA levels of Il6 and Il10 receptors in the TgCRND8 mouse model and temporal cortex of humans with AD and (ii) there is a great deal of variance in individual mouse brain and the human temporal cortex of these interleukins and their receptors.
Conclusions
The underlying immune activation state can markedly affect the efficacy of passive Aβ immunotherapy. These results have important implications for ongoing human AD immunotherapy trials, as they indicate that underlying immune activation states within the brain, which may be highly variable, may influence the ability for passive immunotherapy to alter Aβ deposition.
Funder
National Institutes of Health
CurePSP
Mayo Foundation for Medical Education and Research
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献