A role for α-Synuclein in axon growth and its implications in corticostriatal glutamatergic plasticity in Parkinson’s disease

Author:

Schechter Meir,Grigoletto Jessica,Abd-Elhadi Suaad,Glickstein Hava,Friedman Alexander,Serrano Geidy E.,Beach Thomas G.,Sharon Ronit

Abstract

Abstract Background α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson’s disease (PD). α-Syn has been shown to associate with membranes and bind acidic phospholipids. However, the physiological importance of these associations to the integrity of axons is not fully clear. Methods Biochemical, immunohistochemical and ultrastructural analyses in cultured neurons, transgenic mouse brains, PD and control human brains. Results We analyzed the ultrastructure of cross-sectioned axons localized to white matter tracts (WMTs), within the dorsal striatum of old and symptomatic α-Syn transgenic mouse brains. The analysis indicated a higher density of axons of thinner diameter. Our findings in cultured cortical neurons indicate a role for α-Syn in elongation of the main axon and its collaterals, resulting in enhanced axonal arborization. We show that α-Syn effect to enhance axonal outgrowth is mediated through its activity to regulate membrane levels of the acidic phosphatidylinositol 4,5-bisphosphate (PI4,5P2). Moreover, our findings link α-Syn- enhanced axonal growth with evidence for axonal injury. In relevance to disease mechanisms, we detect in human brains evidence for a higher degree of corticostriatal glutamatergic plasticity within WMTs at early stages of PD. However, at later PD stages, the respective WMTs in the caudate are degenerated with accumulation of Lewy pathology. Conclusions Our results show that through regulating PI4,5P2 levels, α-Syn acts to elongate the main axon and collaterals, resulting in a higher density of axons in the striatal WMTs. Based on these results we suggest a role for α-Syn in compensating mechanisms, involving corticostriatal glutamatergic plasticity, taking place early in PD.

Funder

Israel Science Foundation

National Institute of Neurological Disorders and Stroke

National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3