Abstract
Abstract
Background
Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious.
Main body
Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function.
Conclusions
TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.
Funder
National Natural Science Foundation of China
Shanghai Municipal Science and Technology Major Project
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献