Author:
Shine Kristy M.,Schlegel Lauren,Ho Michelle,Boyd Kaitlyn,Pugliese Robert
Abstract
Abstract
Background
3D printing is a popular technology in many industries secondary to its ability to rapidly produce inexpensive, high fidelity models/products, mainly through layer-by-layer fusion of various substrate materials. In healthcare, 3D printing has garnered interest for its applications in surgery, simulation, education, and medical device development, and 3D printing facilities are now being integrated into hospital-based settings. Yet, little is known regarding the leadership, resources, outputs, and role of these new onsite entities.
Methods
The purpose of this research was to survey features of North American hospital-based 3D printing facilities to understand their design and utility in anticipation of future expansion. Hospital-based 3D printing labs were recruited through online special interest groups to participate via survey response. Anonymous, voluntary data were collected from 21 facilities over 9 weeks and reported/analyzed in aggregate.
Results
Of the respondents, > 50% were founded in the past 5 years and 80% in the past decade, indicating recent and rapid growth of such facilities. Labs were most commonly found within large, university-affiliated hospitals/health systems with administration frequently, but not exclusively, through radiology departments, which was shown to enhance collaboration. All groups reported collaborating with other medical specialties/departments and image segmentation as part of the workflow, showing widespread interest in high fidelity, personalized medicine applications. Lab leadership was most often multidisciplinary, with physicians present on nearly all leadership teams. Budgets, personnel, and outputs varied among groups, however, all groups reported engagement in multiple 3D printing applications.
Conclusion
This preliminary study provides a foundation for understanding the unique nature of hospital-based 3D printing labs. While there is much to learn about such in-house facilities, the data obtained reveal important baseline characteristics. Further research is indicated to validate these early findings and create a detailed picture of the developing infrastructure of 3D printing in healthcare settings.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering
Reference16 articles.
1. Alexander AE, Wake N, Chepelev L, Brantner P, Ryan J, Wang KC. A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards. 3D Print Med. 2021;7(8).
2. Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg. 2010;37:302–6.
3. Sekhar A, Sun MR, Siewert B. A tissue phantom model for training residents in ultrasound-guided liver biopsy. Acad Radiol. 2014;21:902–8.
4. Francoisse CA, Sescleifer AM, King WT, Lin AY. Three-dimensional printing in medicine: a systematic review of pediatric applications. Pediatr Res. 2021;89:415–25.
5. Lin H-H, Lonic D, Lo L-J. 3D printing in orthognathic surgery - a literature review. J Formos Med Assoc. 2018;117:547–58.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献