1. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Students. 63, 123–145 (1994).
2. Ali, B., Harbau, M. H.: Convergence theorems for pseudomonotone equilibrium problem, split feasibility problem, and multivalued strictly pseudocontractive mappings. Numer. Funct. Anal. Optim. 40(10), 1194–1214 (2019).
https://doi.org/10.1080/01630563.2019.1599014
.
3. Combettes, I., Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces. J. Nonlinear. Convex Anal. 6, 117–136 (2005).
4. Moudafi, A.: Second-order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4(1), 1–7 (2003).
5. Tada, A., Takahashi, W.: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. In: W. Takahashi, W. Tanaka, T. (Eds), Nonlinear analysis and convex analysis, pp. 609–617. Yokohama Publishers, Yokohama (2007).