MHD Powell–Eyring dusty nanofluid flow due to stretching surface with heat flux boundary condition

Author:

Abo-zaid Omima A.ORCID,Mohamed R. A.,Hady F. M.,Mahdy A.

Abstract

AbstractA steady MHD boundary layer flow of Powell–Eyring dusty nanofluid over a stretching surface with heat flux condition is studied numerically. It is assumed that the fluid is incompressible and the impacts of thermophoresis and Brownian motion are taken into regard. In addition, the Powell–Eyring terms are considered in the momentum boundary layer and thermal boundary layer. The dust particles are seen as to be having the same size and conform to the nanoparticles in a spherical shape. We obtain a system of ordinary differential equations that are suitable for analyzed numerically using the fourth-order Runge–Kutta method via software algebraic MATLAB by applying appropriate transformations to the system of the governing partial differential equations in our problem. There is perfect compatibility between the bygone and current results when comparing our numerical solutions with the available data for values of the selected parameters. This confirms the validity of the method used here and thus the validity of the results. The influence of some parameters on the boundary layer profiles (the velocity and temperature for the particle phase and fluid phase, and nanoparticle concentration) is discussed. The results of this study display that the profiles of the velocity for particle and fluid phases increase with increasing Powell–Eyring fluid parameter, but reduce with height in magnetic field values. Mass concentration of the dust particles decreases the temperature of both the particle and fluid phases. The results also indicate the concentration of nanoparticle contraction as Schmidt number increases.

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Ghosh, S.K., Bég, O.A., Narahari, M.: Hall effects on MHD flow in a rotating system with heat transfer characteristics. Meccanica 44, 741–765 (2009)

2. Carabineanu, A.: A simplified mathematical theory of MHD power generators. An. St. Univ. Ovidius Constanta 23, 29–39 (2015)

3. Hayat, T., Khan, I., Ellahi, R., Fetecau, C.: Some MHD flows of a second grade fluid through the porous medium. J. Porous Media 11, 389–400 (2008)

4. Alfven, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942)

5. Alfven, H.: Cosmical Electrodynamics: Fundamental Principles The International Series of Monographs on Physics. Oxford University Press, Oxford (1953)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3