Abstract
AbstractThis article presents the study of heat transfer under the influence of mixed convective flow of Eyring-Powell fluid over a stratified stretching sheet. The impact of heat generation/absorption is also discussed. The fluid is considered to be a viscous, incompressible, two dimensional, and laminar. Transformation, based on the similarity variables, is used for the alteration of modeled governing partial differential equations (PDEs) into ordinary differential equations (ODEs). The shooting approach is introduced to accomplish the mathematical solution of governing equations. Runge-Kutta method of order four is used for the integration purpose and Newton’s method helps to refine initial guesses. All the programming is done on MATLAB. The effects of emerging parameters on temperature and velocity profiles are discussed through graphs. The related physical properties of flow, i.e., the skin friction coefficient and Nusselt number are described graphically for various parameters. Numerical values for the Nusselt number and skin friction coefficient are tabulated for the various parameters. It is noted that increment in thermal stratification parameter yields fall in both velocity and temperature of fluid and a reverse relation is observed for the heat generation parameter.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Eldesoky, I. M., Abdelsalam, S. I., El-Askary, W. A., Ahmed, M. M.: Concurrent development of thermal energy with magnetic field on a particle-fluid suspension through a porous conduit. Bio NanoSci. 9, 186–202 (2019).
2. Abdelsalam, S. I., Bhatti, M. M.: New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale. Sci. Rep. 9, 260 (2019).
3. Abdelsalam, S. I., Bhatti, M. M.: The study of non-newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Adv. 8, 7904 (2018).
4. Bhatti, M. M., Marin, M., Zeeshan, A., Ellahi, R., Abdelsalam, S. I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020).
5. Sohail, M., Naz, R., Abdelsalam, S. I.: Application of non-fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Physica A. 537, 122753 (2020).
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献