Abstract
AbstractThe assessment of melting heat transfer and non-uniform heat source on magnetic Cu–H2O nanofluid flow through a porous cylinder was studied. The transformed differential equations describing the motion of Cu–H2O fluid together with pertinent boundary conditions were handled numerically with the assistance of Keller box method. The ranges of volume fraction of copper particles were taken as 0–25%. The impacts of various governing parameters on the physical measures such as Nusselt number, surface drag force, temperature and velocity were analyzed by representing through graphs and tables. It was noted that the flow was influenced accordingly with the governing parameters. The outcomes showed that the rate of heat exchange improved with elevated Reynolds number, space and temperature-dependent internal heat source and melting parameters. The comparison of our data in relation to those of previous works has been shown.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 231, 99–106 (1995)
2. Wang, C.Y.: Fluid flow due to a stretching cylinder. Phys. Fluids 31(3), 466–468 (1988)
3. Ishak, A., Nazar, R., Pop, I.: Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl. Math. Model. 32(10), 2059–2066 (2008)
4. Wang, C.Y., Ng, C.-O.: Slip flow due to a stretching cylinder. Int. J. Non Linear Mech. 46(9), 1191–1194 (2011)
5. Ashorynejad, H.R., Sheikholeslami, M., Pop, I., Ganji, D.D.: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. 49(3), 427–436 (2013)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献