Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder

Author:

Singh Khilap,Pandey Alok KumarORCID,Kumar Manoj

Abstract

AbstractThe assessment of melting heat transfer and non-uniform heat source on magnetic Cu–H2O nanofluid flow through a porous cylinder was studied. The transformed differential equations describing the motion of Cu–H2O fluid together with pertinent boundary conditions were handled numerically with the assistance of Keller box method. The ranges of volume fraction of copper particles were taken as 0–25%. The impacts of various governing parameters on the physical measures such as Nusselt number, surface drag force, temperature and velocity were analyzed by representing through graphs and tables. It was noted that the flow was influenced accordingly with the governing parameters. The outcomes showed that the rate of heat exchange improved with elevated Reynolds number, space and temperature-dependent internal heat source and melting parameters. The comparison of our data in relation to those of previous works has been shown.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3