On solution and perturbation estimates for the nonlinear matrix equation  $$X-A^{*}e^{X}A=I$$

Author:

Chacha Chacha S.ORCID

Abstract

AbstractThis work incorporates an efficient inversion free iterative scheme into Newton’s method to solve Newton’s step regardless of the singularity of the Fr$${\acute{\text {e}}}$$ e ´ chet derivative. The proposed iterative scheme is constructed by extending the idea of the foundational form of the conjugate gradient method. Moreover, the resulting scheme is refined and employed to obtain a symmetric solution of the nonlinear matrix equation  $$X-A^{*}e^{X}A=I.$$ X - A e X A = I . Furthermore, explicit expressions for the perturbation and residual bound estimates of the approximate positive definite solution are derived. Finally, five numerical case studies provided confirm both the preciseness of theoretical results and the effectiveness of the propounded iterative method.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference28 articles.

1. Huang, N., Ma, C.-F.: Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation. J. Comput. Math. Appl. 69, 494–502 (2015)

2. Guo, C.-H., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

3. Peng, Z.-H., Hu, X.Y., Zhang, L.: An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation $$AXB=C.$$. Appl. Math. Comput. 160, 763–777 (2005)

4. Ramadan, M.A., El-Shazly, N.M.: On the maximal positive definite solution of the nonlinear matrix equation$$X-\sum _{j=1}^{n}B_{j=1}^{*}X^{-1}B_j-\sum _{i=1}^{m}A_{i=1}^{*}X^{-1}A_i=I$$. Appl. Math. Inf. Sci. 14(2), 349–354 (2020)

5. Ramadan, M.A.: Necessary and sufficient conditions for the existence of positive definite solutions of the matrix equation. Int. J. Comput. Math. 82(7), 865–870 (2005). https://doi.org/10.1080/00207160412331336107

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3