Abstract
AbstractIn this paper, interesting properties of the generalized topological spaces, generated by the monotonic maps $$\sigma = (cl_{\delta }\circ int_{\delta }),$$
σ
=
(
c
l
δ
∘
i
n
t
δ
)
,
$$\alpha = (int_{\delta }\circ cl_{\delta }\circ int_{\delta }),$$
α
=
(
i
n
t
δ
∘
c
l
δ
∘
i
n
t
δ
)
,
$$\pi = (int_{\delta }\circ cl_{\delta })$$
π
=
(
i
n
t
δ
∘
c
l
δ
)
and $$\beta = (cl_{\delta }\circ int_{\delta }\circ cl_{\delta }),$$
β
=
(
c
l
δ
∘
i
n
t
δ
∘
c
l
δ
)
,
for any generalized topological space $$(X,g_{\delta })$$
(
X
,
g
δ
)
are deduced and analyzed. Special subfamilies of the family of monotonic maps $$\Gamma (X)$$
Γ
(
X
)
are studied and interesting results regarding generalized topologies are obtained.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Bai, S.Z., Zuo, Y.P.: On $$g-\alpha$$-irresolute functions. Acta Math. Hungar. 130(4), 382–389 (2011)
2. Bayhan, S., Kanibir, A., Reilly, I.L.: On functions between generalized topological spaces. Appl. Gen. Topol. 14(2), 195–203 (2013)
3. Cao, C., Yan, J., Wang, W., Wang, B.: Some generalized continuous functions on generalized topological spaces. Hacettepe J. Math. Stat. 42(2), 159–163 (2013)
4. Csázsár, Á.: Generalized topology and generalized continuity. Acta Math. Hungar. 96, 351–357 (2002)
5. Csázsár, Á.: Generalized open sets in generalized topologies. Acta Math. Hungar. 106, 53–66 (2005)