A numerical study on MHD double diffusive nonlinear mixed convective nanofluid flow around a vertical wedge with diffusion of liquid hydrogen

Author:

Patil Prabhugouda Mallanagouda,Kulkarni Madhavarao

Abstract

AbstractThe present study focuses on double diffusive nonlinear (quadratic) mixed convective flow of nanoliquid about vertical wedge with nonlinear temperature-density-concentration variations. This study is found to be innovative and comprises the impacts of quadratic mixed convection, magnetohydrodynamics, diffusion of nanoparticles and liquid hydrogen flow around a wedge. Highly coupled nonlinear partial differential equations (NPDEs) and boundary constraints have been used to model the flow problem, which are then transformed into a dimensionless set of equations utilizing non-similar transformations. Further, a set of NPDEs would be linearized with the help of Quasilinearization technique, and then, the linear partial differential equations are transformed into a block tri-diagonal system through using implicit finite difference scheme, which is solved using Verga’s algorithm. The study findings were explored through graphs for the fluid velocity, temperature, concentration, nanoparticle volume fraction distributions and its corresponding gradients. One of the important results of this study is that the higher wedge angle values upsurge the friction between the particles of the fluid and the wedge surface. Rising Schmidt number declines the concentration distribution and enhances the magnitude of Sherwood number. Nanofluid’s temperature increases with varying applied magnetic field. The present study has notable applications in the designing and manufacturing of wedge-shaped materials in space aircrafts, construction of dams, thermal systems, oil and gas industries, etc.

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Abdelsalam, S.I., Zaher, A.Z.: Leveraging elasticity to uncover the role of Rabinowitsch suspension through a wavelike conduit: consolidated blood suspension application. Mathematics 2021, 9 (2008)

2. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Magnetohydrodynamic instability of mixed convection in a differentially heated vertical channel. Eur. Phys. J. Plus 134, 53 (2019)

3. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Stability of mixed convection in a differentially heated vertical fluid layer with internal heat sources. Fluid Dyn. Res. (2019). https://doi.org/10.1088/1873-7005/ab2d50

4. Abumandour, R.M., Eldesoky, I.M., Kamel, M.H., Ahmed, M.M., Abdelsalam, S.I.: Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Z. Naturforschung A 75, 727–738 (2020)

5. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Numerical investigation of the stability of mixed convection in a differentially heated vertical porous slab. Appl. Math. Comput. 389, 125486 (2021)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3