Author:
Patil Prabhugouda Mallanagouda,Kulkarni Madhavarao
Abstract
AbstractThe present study focuses on double diffusive nonlinear (quadratic) mixed convective flow of nanoliquid about vertical wedge with nonlinear temperature-density-concentration variations. This study is found to be innovative and comprises the impacts of quadratic mixed convection, magnetohydrodynamics, diffusion of nanoparticles and liquid hydrogen flow around a wedge. Highly coupled nonlinear partial differential equations (NPDEs) and boundary constraints have been used to model the flow problem, which are then transformed into a dimensionless set of equations utilizing non-similar transformations. Further, a set of NPDEs would be linearized with the help of Quasilinearization technique, and then, the linear partial differential equations are transformed into a block tri-diagonal system through using implicit finite difference scheme, which is solved using Verga’s algorithm. The study findings were explored through graphs for the fluid velocity, temperature, concentration, nanoparticle volume fraction distributions and its corresponding gradients. One of the important results of this study is that the higher wedge angle values upsurge the friction between the particles of the fluid and the wedge surface. Rising Schmidt number declines the concentration distribution and enhances the magnitude of Sherwood number. Nanofluid’s temperature increases with varying applied magnetic field. The present study has notable applications in the designing and manufacturing of wedge-shaped materials in space aircrafts, construction of dams, thermal systems, oil and gas industries, etc.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Abdelsalam, S.I., Zaher, A.Z.: Leveraging elasticity to uncover the role of Rabinowitsch suspension through a wavelike conduit: consolidated blood suspension application. Mathematics 2021, 9 (2008)
2. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Magnetohydrodynamic instability of mixed convection in a differentially heated vertical channel. Eur. Phys. J. Plus 134, 53 (2019)
3. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Stability of mixed convection in a differentially heated vertical fluid layer with internal heat sources. Fluid Dyn. Res. (2019). https://doi.org/10.1088/1873-7005/ab2d50
4. Abumandour, R.M., Eldesoky, I.M., Kamel, M.H., Ahmed, M.M., Abdelsalam, S.I.: Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Z. Naturforschung A 75, 727–738 (2020)
5. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Numerical investigation of the stability of mixed convection in a differentially heated vertical porous slab. Appl. Math. Comput. 389, 125486 (2021)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献