Improved volume variable cluster model method for crystal-lattice optimization: effect on isotope fractionation factor

Author:

Wang Yan-Fang,Ji Xin-Yue,Xing Le-Cai,Wang Peng-Dong,Liu Jian,Zhang Tian-Di,Zhao Hao-Nan,He Hong-Tao

Abstract

AbstractThe isotopic fractionation factor and element partition coefficient can be calculated only after the geometric optimization of the molecular clusters is completed. Optimization directly affects the accuracy of some parameters, such as the average bond length, molecular volume, harmonic vibrational frequency, and other thermodynamic parameters. Here, we used the improved volume variable cluster model (VVCM) method to optimize the molecular clusters of a typical oxide, quartz. We documented the average bond length and relative volume change. Finally, we extracted the harmonic vibrational frequencies and calculated the equilibrium fractionation factor of the silicon and oxygen isotopes. Given its performance in geometrical optimization and isotope fractionation factor calculation, we further applied the improved VVCM method to calculate isotope equilibrium fractionation factors of Cd and Zn between the hydroxide (Zn–Al layered double hydroxide), carbonate (cadmium-containing calcite) and their aqueous solutions under superficial conditions. We summarized a detailed procedure and used it to re-evaluate published theoretical results for cadmium-containing hydroxyapatite, emphasizing the relative volume change for all clusters and confirming the optimal point charge arrangement (PCA). The results showed that the average bond length and isotope fractionation factor are consistent with those published in previous studies, and the relative volume changes are considerably lower than the results calculated using the periodic boundary method. Specifically, the average Si–O bond length of quartz was 1.63 Å, and the relative volume change of quartz centered on silicon atoms was  − 0.39%. The average Zn–O bond length in the Zn–Al-layered double hydroxide was 2.10 Å, with a relative volume change of 1.96%. Cadmium-containing calcite had an average Cd–O bond length of 2.28 Å, with a relative volume change of 0.45%. At 298 K, the equilibrium fractionation factors between quartz, Zn–Al-layered double hydroxide, cadmium-containing calcite, and their corresponding aqueous solutions were $$\Delta ^{30/28} {\text{Si}}_{{{\text{Qtz-H}}_{4} {\text{SiO}}_{4} }} = 2.20{\permil} $$ Δ 30 / 28 Si Qtz-H 4 SiO 4 = 2.20 , $$\Delta^{18/16} {\text{O}}_{ {\text{Qtz}}{-} ( {\text{H}}_{2} {\text{O}} )_{\text{n}}} = 36.05{\permil}$$ Δ 18 / 16 O Qtz - ( H 2 O ) n = 36.05 , $$\Delta^{66/64} {\text{Zn}}_{ {\text{Zn}} {-} {\text{Al LDH-Zn}} ( {\text{H}}_{2} {\text{O}} )_{\text{n}}^{2+}} = 1.12{\permil}$$ Δ 66 / 64 Zn Zn - Al LDH-Zn ( H 2 O ) n 2 + = 1.12 and $$\Delta^{114/110} {\text{Cd}}_{ {\text{(Cd--Cal)-Cd}} ( {\text{H}}_{2} {\text{O}} )_ {\text{n}}^{2 +} } = - 0.26{\permil}$$ Δ 114 / 110 Cd (Cd--Cal)-Cd ( H 2 O ) n 2 + = - 0.26 respectively. These results strongly support the reliability of the improved VVCM method for geometric optimization of molecular clusters.

Funder

Hebei Education Department Key Program

Hebei Natural Sciences Foundation

State Natural Sciences Foundation

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3