Author:
Munir Soundasse,Thierry Sylvain,Subra Frédéric,Deprez Eric,Delelis Olivier
Abstract
Abstract
Background
HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3′-processed DNA.
Results
Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3′-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3′-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3′-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus.
Conclusions
We describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3′-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献