Author:
Siddappa Nagadenahalli Byrareddy,Venkatramanan Mohanram,Venkatesh Prasanna,Janki Mohanbabu Vijayamma,Jayasuryan Narayana,Desai Anita,Ravi Vasanthapuram,Ranga Udaykumar
Abstract
Abstract
Background
Of the diverse subtypes of Human Immunodeficiency Virus Type-1 (HIV-1), subtype-C strains cause a large majority of infections worldwide. The reasons for the global dominance of HIV-1 subtype-C infections are not completely understood. Tat, being critical for viral infectivity and pathogenesis, may differentially modulate pathogenic properties of the viral subtypes. Biochemical studies on Tat are hampered by the limitations of the current purification protocols. Tat purified using standard protocols often is competent for transactivation activity but defective for a variety of other biological functions. Keeping this limitation in view, we developed an efficient protein purification strategy for Tat.
Results
Tat proteins obtained using the novel strategy described here were free of contaminants and retained biological functions as evaluated in a range of assays including the induction of cytokines, upregulation of chemokine coreceptor, transactivation of the viral promoter and rescue of a Tat-defective virus. Given the highly unstable nature of Tat, we evaluated the effect of the storage conditions on the biological function of Tat following purification. Tat stored in a lyophilized form retained complete biological activity regardless of the storage temperature. To understand if variations in the primary structure of Tat could influence the secondary structure of the protein and consequently its biological functions, we determined the CD spectra of subtype-C and -B Tat proteins. We demonstrate that subtype-C Tat may have a relatively higher ordered structure and be less flexible than subtype-B Tat. We show that subtype-C Tat as a protein, but not as a DNA expression vector, was consistently inferior to subtype-B Tat in a variety of biological assays. Furthermore, using ELISA, we evaluated the anti-Tat antibody titers in a large number of primary clinical samples (n = 200) collected from all four southern Indian states. Our analysis of the Indian populations demonstrated that Tat is non-immunodominant and that a large variation exists in the antigen-specific antibody titers.
Conclusion
Our report not only describes a simple protein purification strategy for Tat but also demonstrates important structural and functional differences between subtype-B and -C Tat proteins. Furthermore, this is the first report of protein purification and characterization of subtype-C Tat.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference99 articles.
1. Leitner T, Foley B, Hahn B, Marx P, McCutchan F, Mellors J, Wolinsky S, Korber B: HIV Sequence Compendium 2005. 2005, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, LA
2. Esparza J, Bhamarapravati N: Accelerating the development and future availability of HIV-1 vaccines: why, when, where, and how?. Lancet. 2000, 355: 2061-2066. 10.1016/S0140-6736(00)02360-6.
3. Salemi M, De Oliveira T, Soares MA, Pybus O, Dumans AT, Vandamme AM, Tanuri A, Cassol S, Fitch WM: Different epidemic potentials of the HIV-1B and C subtypes. J Mol Evol. 2005, 60: 598-605. 10.1007/s00239-004-0206-5.
4. Alaeus A: Significance of HIV-1 genetic subtypes. Scand J Infect Dis. 2000, 32: 455-463. 10.1080/003655400458695.
5. Campbell TB: Are all HIV type 1 strains created equal?. Clin Infect Dis. 2006, 42: 853-854. 10.1086/499962.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献