Author:
Baird Heather A,Gao Yong,Galetto Román,Lalonde Matthew,Anthony Reshma M,Giacomoni Véronique,Abreha Measho,Destefano Jeffrey J,Negroni Matteo,Arts Eric J
Abstract
Abstract
Background
HIV-1 recombination between different subtypes has a major impact on the global epidemic. The generation of these intersubtype recombinants follows a defined set of events starting with dual infection of a host cell, heterodiploid virus production, strand transfers during reverse transcription, and then selection. In this study, recombination frequencies were measured in the C1-C4 regions of the envelope gene in the presence (using a multiple cycle infection system) and absence (in vitro reverse transcription and single cycle infection systems) of selection for replication-competent virus. Ugandan subtypes A and D HIV-1 env sequences (115-A, 120-A, 89-D, 122-D, 126-D) were employed in all three assay systems. These subtypes co-circulate in East Africa and frequently recombine in this human population.
Results
Increased sequence identity between viruses or RNA templates resulted in increased recombination frequencies, with the exception of the 115-A virus or RNA template. Analyses of the recombination breakpoints and mechanistic studies revealed that the presence of a recombination hotspot in the C3/V4 env region, unique to 115-A as donor RNA, could account for the higher recombination frequencies with the 115-A virus/template. Single-cycle infections supported proportionally less recombination than the in vitro reverse transcription assay but both systems still had significantly higher recombination frequencies than observed in the multiple-cycle virus replication system. In the multiple cycle assay, increased replicative fitness of one HIV-1 over the other in a dual infection dramatically decreased recombination frequencies.
Conclusion
Sequence variation at specific sites between HIV-1 isolates can introduce unique recombination hotspots, which increase recombination frequencies and skew the general observation that decreased HIV-1 sequence identity reduces recombination rates. These findings also suggest that the majority of intra- or intersubtype A/D HIV-1 recombinants, generated with each round of infection, are not replication-competent and do not survive in the multiple-cycle system. Ability of one HIV-1 isolate to outgrow the other leads to reduced co-infections, heterozygous virus production, and recombination frequencies.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference63 articles.
1. Kawai S, Hanafusa H: Genetic recombination with avian tumor virus. Virology. 1972, 49: 37-44. 10.1016/S0042-6822(72)80005-9.
2. Linial M, Brown S: High-frequency recombination within the gag gene of Rous sarcoma virus. J Virol. 1979, 31: 257-260.
3. Vogt PK: Genetically stable reassortment of markers during mixed infection with avian tumor viruses. Virology. 1971, 46: 947-952. 10.1016/0042-6822(71)90093-6.
4. Hu WS, Temin HM: Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA. 1990, 87: 1556-1560. 10.1073/pnas.87.4.1556.
5. Hu WS, Pathak VK, Temin HM: Role of reverse transcriptase in retroviral recombination. Reverse transcruptase. Edited by: Skalka AM and Goff SP. 1993, New York, Cold Spring Harbor Laboratory Press, 251-274.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献