Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A

Author:

Hoque Mainul,Hanauske-Abel Hartmut M,Palumbo Paul,Saxena Deepti,D'Alliessi Gandolfi Darlene,Park Myung Hee,Pe'ery Tsafi,Mathews Michael B

Abstract

Abstract Background Eukaryotic translation initiation factor eIF5A has been implicated in HIV-1 replication. This protein contains the apparently unique amino acid hypusine that is formed by the post-translational modification of a lysine residue catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH). DOHH activity is inhibited by two clinically used drugs, the topical fungicide ciclopirox and the systemic medicinal iron chelator deferiprone. Deferiprone has been reported to inhibit HIV-1 replication in tissue culture. Results Ciclopirox and deferiprone blocked HIV-1 replication in PBMCs. To examine the underlying mechanisms, we investigated the action of the drugs on eIF5A modification and HIV-1 gene expression in model systems. At early times after drug exposure, both drugs inhibited substrate binding to DOHH and prevented the formation of mature eIF5A. Viral gene expression from HIV-1 molecular clones was suppressed at the RNA level independently of all viral genes. The inhibition was specific for the viral promoter and occurred at the level of HIV-1 transcription initiation. Partial knockdown of eIF5A-1 by siRNA led to inhibition of HIV-1 gene expression that was non-additive with drug action. These data support the importance of eIF5A and hypusine formation in HIV-1 gene expression. Conclusion At clinically relevant concentrations, two widely used drugs blocked HIV-1 replication ex vivo. They specifically inhibited expression from the HIV-1 promoter at the level of transcription initiation. Both drugs interfered with the hydroxylation step in the hypusine modification of eIF5A. These results have profound implications for the potential therapeutic use of these drugs as antiretrovirals and for the development of optimized analogs.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3