Author:
Bolin Lisa L,Chandhasin Chandtip,Lobelle-Rich Patricia A,Albritton Lorraine M,Levy Laura S
Abstract
Abstract
Background
Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor.
Results
Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect.
Conclusions
The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference32 articles.
1. Neil JC, Fulton R, Rigby M, Stewart M: Feline leukaemia virus: generation of pathogenic and oncogenic variants. Curr Top Microbiol Immunol. 1991, 171: 67-93.
2. Overbaugh J, Bangham CR: Selection forces and constraints on retroviral sequence variation. Science. 2001, 292: 1106-1109. 10.1126/science.1059128.
3. Athas GB, Choi B, Prabhu S, Lobelle-Rich PA, Levy LS: Genetic determinants of feline leukemia virus-induced multicentric lymphomas. Virology. 1995, 214: 431-438. 10.1006/viro.1995.0053.
4. Levesque KS, Bonham L, Levy LS: flvi-1, a common integration domain of feline leukemia virus in naturally occurring lymphomas of a particular type. J Virol. 1990, 64: 3455-3462.
5. Chandhasin C, Lobelle-Rich PA, Levy LS: Feline leukemia virus LTR variation and disease association in a geographic and temporal cluster. J Gen Virol. 2004, 85: 2937-2942. 10.1099/vir.0.80149-0.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献