Author:
Wu Jing Qin,Wang Bin,Belov Larissa,Chrisp Jeremy,Learmont Jenny,Dyer Wayne B,Zaunders John,Cunningham Anthony L,Dwyer Dominic E,Saksena Nitin K
Abstract
Abstract
Background
Expression levels of cell surface antigens such as CD38 and HLA-DR are related to HIV disease stages. To date, the immunophenotyping of cell surface antigens relies on flow cytometry, allowing estimation of 3–6 markers at a time. The recently described DotScan antibody microarray technology enables the simultaneous analysis of a large number of cell surface antigens. This new technology provides new opportunities to identify novel differential markers expressed or co-expressed on CD4+ and CD8+ T cells, which could aid in defining the stage of evolution of HIV infection and the immune status of the patient.
Results
Using this new technology, we compared cell surface antigen expression on purified CD4+ and CD8+ T cells between 3 HIV disease groups (long-term non-progressors controlling viremia naturally; HIV+ patients on highly active antiretroviral therapy (HAART) with HIV plasma viral loads <50 copies/ml; and HIV+ patients with viremia during HAART) and uninfected controls. Pairwise comparisons identified 17 statistically differential cell surface antigens including 5 novel ones (CD212b1, CD218a, CD183, CD3 epsilon and CD9), not previously reported. Notably, changes in activation marker expression were more pronounced in CD8+ T cells, whereas changes in the expression of cell membrane receptors for cytokines and chemokines were more pronounced in CD4+ T cells.
Conclusion
Our study not only confirmed cell surface antigens previously reported to be related to HIV disease stages, but also identified 5 novel ones. Of these five, three markers point to major changes in responsiveness to certain cytokines, which are involved in Th1 responses. For the first time our study shows how density of cell surface antigens could be efficiently exploited in an array manner in relation to HIV disease stages. This new platform of identifying disease markers can be further extended to study other diseases.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献