On the steps of cell-to-cell HIV transmission between CD4 T cells

Author:

Puigdomènech Isabel,Massanella Marta,Cabrera Cecilia,Clotet Bonaventura,Blanco Julià

Abstract

Abstract Although cell-to-cell HIV transmission was defined in early 90's, in the last five years, several groups have underscored the relevance of this mode of HIV spread between productively infected and uninfected CD4 T cells by defining the term virological synapse (VS). However, unraveling the molecular mechanisms of this efficient mode of viral spread appears to be more controversial than expected. Different authors have highlighted the role of a classical co-receptor-dependent HIV transmission while others describe a co-receptor-independent mechanism as predominant in VS. By analyzing different cellular models (primary cells and cell lines), we suggest that primary cells are highly sensitive to the physical passage of viral particles across the synapses, a co-receptor-independent phenomenon that we call "HIV transfer". Once viral particles are transferred, they can infect target cells by a co-receptor-dependent mechanism that fits with the classical meaning of "HIV transmission" and that is much more efficient in cell lines. Differences in the ability of primary CD4 T cells and cell lines to support HIV transfer and transmission explain most of the reported controversial data and should be taken into account when analyzing cell-to-cell HIV spread. Moreover, the terms transfer and transmission may be useful to define the events occurring at the VS. Thus, HIV particles would be transferred across synapses, while HIV infection would be transmitted between cells. Chronologically, HIV transfer is an early event occurring immediately after the VS formation, which precedes but does not inevitably lead to transmission, a late event resulting in infection.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3