Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions

Author:

Khan Mohammad A,Goila-Gaur Ritu,Opi Sandrine,Miyagi Eri,Takeuchi Hiroaki,Kao Sandra,Strebel Klaus

Abstract

Abstract Background Efficient incorporation of the cellular cytidine deaminase APOBEC3G (APO3G) into HIV-1 virions is necessary for its antiviral activity. Even though cellular RNAs are known to be non-specifically incorporated into virus particles, we have previously found that encapsidation of APO3G into HIV-1 virions is specifically enhanced by viral genomic RNA. Intracellularly, APO3G was found to form large RNA-protein complexes involving a variety of cellular RNAs. The goal of this study was to investigate the possible contribution of host RNAs recently identified in intracellular APO3G ribonucleoprotein complexes to APO3G's encapsidation into HIV-1 virions. Results Our results show that 7SL RNA, a component of signal recognition particles, and hY1, hY3, hY4, hY5 RNAs were present in intracellular APO3G complexes and were packaged into HIV-1 particles lacking viral genomic RNA unlike APO3G, which was not packaged in significant amounts into genomic RNA-deficient particles. These results indicate that packaging of 7SL or hY RNAs is not sufficient for the packaging of APO3G into HIV-1 virions. We also tested the encapsidation of several other cellular RNAs including β-actin, GAPDH, α-tubulin, and small nuclear RNAs and determined their effect on the packaging of APO3G into nascent virions. Again, we were unable to observe any correlation between APO3G encapsidation and the packaging of any of these cellular RNAs. Conclusion The results from this study support our previous conclusion that viral genomic RNA is a critical determinant for APO3G incorporation into HIV-1 virions. While most cellular RNAs tested in this study were packaged into viruses or virus-like particles we failed to identify a correlation between APO3G encapsidation and the packaging of these cellular RNAs.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3