Regulation of primate lentiviral RNA dimerization by structural entrapment

Author:

Baig Tayyba T,Strong Christy L,Lodmell J Stephen,Lanchy Jean-Marc

Abstract

Abstract Background Genomic RNA dimerization is an important process in the formation of an infectious lentiviral particle. One of the signals involved is the stem-loop 1 (SL1) element located in the leader region of lentiviral genomic RNAs which also plays a role in encapsidation and reverse transcription. Recent studies revealed that HIV types 1 and 2 leader RNAs adopt different conformations that influence the presentation of RNA signals such as SL1. To determine whether common mechanisms of SL1 regulation exist among divergent lentiviral leader RNAs, here we compare the dimerization properties of SIVmac239, HIV-1, and HIV-2 leader RNA fragments using homologous constructs and experimental conditions. Prior studies from several groups have employed a variety of constructs and experimental conditions. Results Although some idiosyncratic differences in the dimerization details were observed, we find unifying principles in the regulation strategies of the three viral RNAs through long- and short-range base pairing interactions. Presentation and efficacy of dimerization through SL1 depends strongly upon the formation or dissolution of the lower stem of SL1 called stem B. SL1 usage may also be down-regulated by long-range interactions involving sequences between SL1 and the first codons of the gag gene. Conclusion Despite their sequence differences, all three lentiviral RNAs tested in this study showed a local regulation of dimerization through the stabilization of SL1.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3