Systematic analysis of alternative first exons in plant genomes

Author:

Chen Wei-Hua,Lv Guanting,Lv Congying,Zeng Changqing,Hu Songnian

Abstract

Abstract Background Alternative splicing (AS) contributes significantly to protein diversity, by selectively using different combinations of exons of the same gene under certain circumstances. One particular type of AS is the use of alternative first exons (AFEs), which can have consequences far beyond the fine-tuning of protein functions. For example, AFEs may change the N-termini of proteins and thereby direct them to different cellular compartments. When alternative first exons are distant, they are usually associated with alternative promoters, thereby conferring an extra level of gene expression regulation. However, only few studies have examined the patterns of AFEs, and these analyses were mainly focused on mammalian genomes. Recent studies have shown that AFEs exist in the rice genome, and are regulated in a tissue-specific manner. Our current understanding of AFEs in plants is still limited, including important issues such as their regulation, contribution to protein diversity, and evolutionary conservation. Results We systematically identified 1,378 and 645 AFE-containing clusters in rice and Arabidopsis, respectively. From our data sets, we identified two types of AFEs according to their genomic organisation. In genes with type I AFEs, the first exons are mutually exclusive, while most of the downstream exons are shared among alternative transcripts. Conversely, in genes with type II AFEs, the first exon of one gene structure is an internal exon of an alternative gene structure. The functionality analysis indicated about half and ~19% of the AFEs in Arabidopsis and rice could alter N-terminal protein sequences, and ~5% of the functional alteration in type II AFEs involved protein domain addition/deletion in both genomes. Expression analysis indicated that 20~66% of rice AFE clusters were tissue- and/or development- specifically transcribed, which is consistent with previous observations; however, a much smaller percentage of Arabidopsis AFEs was regulated in this manner, which suggests different regulation mechanisms of AFEs between rice and Arabidopsis. Statistical analysis of some features of AFE clusters, such as splice-site strength and secondary structure formation further revealed differences between these two species. Orthologous search of AFE-containing gene pairs detected only 19 gene pairs conserved between rice and Arabidopsis, accounting only for a few percent of AFE-containing clusters. Conclusion Our analysis of AFE-containing genes in rice and Arabidopsis indicates that AFEs have multiple functions, from regulating gene expression to generating protein diversity. Comparisons of AFE clusters revealed different features in the two plant species, which indicates that AFEs may have evolved independently after the separation of rice (a model monocot) and Arabidopsis (a model dicot).

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference30 articles.

1. Blencowe BJ: Alternative splicing: new insights from global analyses. Cell. 2006, 126 (1): 37-47. 10.1016/j.cell.2006.06.023.

2. Maniatis T, Tasic B: Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature. 2002, 418 (6894): 236-243. 10.1038/418236a.

3. Lareau LF, Green RE, Bhatnagar RS, Brenner SE: The evolving roles of alternative splicing. Curr Opin Struct Biol. 2004, 14 (3): 273-282. 10.1016/j.sbi.2004.05.002.

4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ: Initial sequencing and analysis of the human genome. Nature. 2001, 409 (6822): 860-921. 10.1038/35057062.

5. Xu Q, Modrek B, Lee C: Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucl Acids Res. 2002, 30 (17): 3754-3766. 10.1093/nar/gkf492.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3