Whole-Organ analysis of calcium behaviour in the developing pistil of olive (Olea europaeaL.) as a tool for the determination of key events in sexual plant reproduction

Author:

Zienkiewicz Krzysztof,Rejón Juan D,Suárez Cynthia,Castro Antonio J,de Dios Alché Juan,Rodríguez García María Isabel

Abstract

Abstract Background The pistil is a place where multiple interactions between cells of different types, origin, and function occur. Ca2+ is one of the key signal molecules in plants and animals. Despite the numerous studies on Ca2+ signalling during pollen-pistil interactions, which constitute one of the main topics of plant physiology, studies on Ca2+ dynamics in the pistil during flower formation are scarce. The purpose of this study was to analyze the contents and in situ localization of Ca2+ at the whole-organ level in the pistil of olive during the whole course of flower development. Results The obtained results showed significant changes in Ca2+ levels and distribution during olive pistil development. In the flower buds, the lowest levels of detectable Ca2+ were observed. As flower development proceeded, the Ca2+ amount in the pistil successively increased and reached the highest levels just after anther dehiscence. When the anthers and petals fell down a dramatic but not complete drop in calcium contents occurred in all pistil parts. In situ Ca2+ localization showed a gradual accumulation on the stigma, and further expansion toward the style and the ovary after anther dehiscence. At the post-anthesis phase, the Ca2+ signal on the stigmatic surface decreased, but in the ovary a specific accumulation of calcium was observed only in one of the four ovules. Ultrastructural localization confirmed the presence of Ca2+ in the intracellular matrix and in the exudate secreted by stigmatic papillae. Conclusions This is the first report to analyze calcium in the olive pistil during its development. According to our results in situ calcium localization by Fluo-3 AM injection is an effective tool to follow the pistil maturity degree and the spatial organization of calcium-dependent events of sexual reproduction occurring in developing pistil of angiosperms. The progressive increase of the Ca2+ pool during olive pistil development shown by us reflects the degree of pistil maturity. Ca2+ distribution at flower anthesis reflects the spatio-functional relationship of calcium with pollen-stigma interaction, progamic phase, fertilization and stigma senescence.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference51 articles.

1. Knox RB: Pollen-pistil interactions. In Encyclopedia of plant physiology.Volume 17. Edited by: Linskens HF, Heslop-Harrison J. new series, Springer,Berlin; 1984:508-608.

2. Bush DS: Calcium regulation in plant cells and its role in signalling. Ann Rev Plant Physiol Plant Mol Biol. 1995, 46: 95-122. 10.1146/annurev.pp.46.060195.000523.

3. Zhao J, Yu FL, Liang SP, Zhou C, Yang HY: Changes of calcium distribution in egg cells, zygotes and two-celled proembryos of rice (Oryza sativa L.). Sex Plant Rep. 2000, 14: 331-337.

4. Ge LL, Xie CT, Tian HQ, Russel SD: Calcium function and distribution during fertilization in angiosperms. Am J Bot. 2007, 94: 1046-1060. 10.3732/ajb.94.6.1046.

5. Putney JW: Calcium signalling CRC Press; 2006, ISBN-13: 978-0-8493-2783-4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3