Author:
Spollen William G,Tao Wenjing,Valliyodan Babu,Chen Kegui,Hejlek Lindsey G,Kim Jong-Joo,LeNoble Mary E,Zhu Jinming,Bohnert Hans J,Henderson David,Schachtman Daniel P,Davis Georgia E,Springer Gordon K,Sharp Robert E,Nguyen Henry T
Abstract
Abstract
Background
Previous work showed that the maize primary root adapts to low Ψw (-1.6 MPa) by maintaining longitudinal expansion in the apical 3 mm (region 1), whereas in the adjacent 4 mm (region 2) longitudinal expansion reaches a maximum in well-watered roots but is progressively inhibited at low Ψw. To identify mechanisms that determine these responses to low Ψw, transcript expression was profiled in these regions of water-stressed and well-watered roots. In addition, comparison between region 2 of water-stressed roots and the zone of growth deceleration in well-watered roots (region 3) distinguished stress-responsive genes in region 2 from those involved in cell maturation.
Results
Responses of gene expression to water stress in regions 1 and 2 were largely distinct. The largest functional categories of differentially expressed transcripts were reactive oxygen species and carbon metabolism in region 1, and membrane transport in region 2. Transcripts controlling sucrose hydrolysis distinguished well-watered and water-stressed states (invertase vs. sucrose synthase), and changes in expression of transcripts for starch synthesis indicated further alteration in carbon metabolism under water deficit. A role for inositols in the stress response was suggested, as was control of proline metabolism. Increased expression of transcripts for wall-loosening proteins in region 1, and for elements of ABA and ethylene signaling were also indicated in the response to water deficit.
Conclusion
The analysis indicates that fundamentally different signaling and metabolic response mechanisms are involved in the response to water stress in different regions of the maize primary root elongation zone.
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Boyer JS: Plant productivity and the environment. Science. 1982, 218: 443-448. 10.1126/science.218.4571.443.
2. Sharp RE, Davies WJ: Regulation of growth and development of plants growing with a restricted supply of water. Plants under stress. Edited by: Jones HG, Flowers TL, Jones MB. 1989, Cambridge: Cambridge University Press, 71-93.
3. Spollen WG, Sharp RE, Saab IN, Wu Y: Regulation of cell expansion in roots and shoots at low water potentials. Water deficits Plant responses from cell to community. Edited by: Smith JAC, Griffiths H. 1993, Oxford: Bios Scientific Publishers, 37-52.
4. Sharp RE, Silk WK, Hsiao TC: Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiol. 1988, 87: 50-57.
5. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT: Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot. 2004, 55: 2343-2351. 10.1093/jxb/erh276.
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献