Author:
Diretto Gianfranco,Welsch Ralf,Tavazza Raffaela,Mourgues Fabienne,Pizzichini Daniele,Beyer Peter,Giuliano Giovanni
Abstract
Abstract
Background
Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold.
Results
In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species.
Conclusion
Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G: Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng. 2002, 4 (4): 263-272. 10.1006/mben.2002.0234.
2. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA: Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot. 2005, 56 (409): 81-89.
3. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G: Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 2006, 6 (1): 13-10.1186/1471-2229-6-13.
4. Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D: Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. Plant Cell. 2003, 15 (6): 1320-1332. 10.1105/tpc.011403.
5. Fiore A, Dall'osto L, Fraser PD, Bassi R, Giuliano G: Elucidation of the beta-carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett. 2006, 580 (19): 4718-4722. 10.1016/j.febslet.2006.07.055.
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献