Author:
Hu Fengyi,Wang Di,Zhao Xiuqin,Zhang Ting,Sun Haixi,Zhu Linghua,Zhang Fan,Li Lijuan,Li Qiong,Tao Dayun,Fu Binying,Li Zhikang
Abstract
Abstract
Background
Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array.
Results
A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs.
Conclusion
The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL: The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA. 1995, 92: 6127-6131. 10.1073/pnas.92.13.6127.
2. Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill WK, Paterson AH: Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiology. 2006, 142: 1148-1159. 10.1104/pp.106.082891.
3. Tao D, Hu F, Yang Y, Xu P, Li J, Wen G, Sacks E, McNally K, Sripichitt P: Rhizomatous individual was obtained from interspecific BC2F1 progenies between Oryza sativa and Oryza longistaminata. Rice Genet Newsl. 2001, 18: 11-13.
4. Sacks EJ, Dhanapala MP, Tao DY, St Cruz MT, Sallan R: Breeding for perennial growth and fertility in an Oryza sativa/O. longistaminata population. Field Crop Research. 2006, 95 (1): 39-48. 10.1016/j.fcr.2005.01.021.
5. Sacks EJ, Schmit V, McNally KL, Sta Cruz MT: Fertility in an interspecific rice population and its effect on selection for rhizome length. Field Crops Research. 2006, 95 (1): 30-38. 10.1016/j.fcr.2005.01.026.
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献