'Le Rouge et le Noir': A decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers

Author:

Thill Jana,Miosic Silvija,Ahmed Romel,Schlangen Karin,Muster Gerlinde,Stich Karl,Halbwirth Heidi

Abstract

Abstract Background More than 20,000 cultivars of garden dahlia (Dahlia variabilis hort.) are available showing flower colour from white, yellow and orange to every imaginable hue of red and purple tones. Thereof, only a handful of cultivars are so-called black dahlias showing distinct black-red tints. Flower colour in dahlia is a result of the accumulation of red anthocyanins, yellow anthochlors (6’-deoxychalcones and 4-deoxyaurones) and colourless flavones and flavonols, which act as copigments. White and yellow coloration occurs only if the pathway leading to anthocyanins is incomplete. Not in all cultivars the same step of the anthocyanin pathway is affected, but the lack of dihydroflavonol 4-reductase activity is frequently observed and this seems to be based on the suppression of the transcription factor DvIVS. The hitherto unknown molecular background for black colour in dahlia is here presented. Results Black cultivars accumulate high amounts of anthocyanins, but show drastically reduced flavone contents. High activities were observed for all enzymes from the anthocyanin pathway whereas FNS II activity could not be detected or only to a low extent in 13 of 14 cultivars. cDNA clones and genomic clones of FNS II were isolated. Independently from the colour type, heterologous expression of the cDNA clones resulted in functionally active enzymes. FNS II possesses one intron of varying length. Quantitative Real-time PCR showed that FNS II expression in black cultivars is low compared to other cultivars. No differences between black and red cultivars were observed in the expression of transcription factors IVS and possible regulatory genes WDR1, WDR2, MYB1, MYB2, 3RMYB and DEL or the structural genes of the flavonoid pathway. Despite the suppression of FHT expression, flavanone 3-hydroxylase (FHT, synonym F3H) enzyme activity was clearly present in the yellow and white cultivars. Conclusions An increased accumulation of anthocyanins establishes the black flowering phenotypes. In the majority of black cultivars this is due to decreased flavone accumulation and thus a lack of competition for flavanones as the common precursors of flavone formation and the anthocyanin pathway. The low FNS II activity is reflected by decreased FNS II expression.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference38 articles.

1. McClaren M: Dahlia: history and species. Encyclopedia of dahlias; Portland. Edited by: McClaren M. Portland, Oregon: Timber Press, 2009:161-166.

2. Giannasi DE: The flavonoid systematics of the genus Dahlia (Compositae). Mem New York Bot Gard. 1975, 26 (2): 1-125.

3. Halbwirth H, Muster G, Stich K: Unraveling the biochemical base of dahlia flower coloration. Nat Prod Comm. 2008, 3: 1259-1266.

4. Harborne JB: Comparative biochemistry of flavonoids. London: Academic Press 1967.

5. Nordstrom C, Swain T: The flavonoid glycosides of Dahlia variabilis. II. Glycosides of yellow varieties. Arch Biochem Biophys. 1956, 60 (2): 329-344. 10.1016/0003-9861(56)90435-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3